R19

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations December-2021 PROBABILITY, NUMERICAL METHODS AND TRANSFORMS

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- 1 a Out of 15 items 4 are not in good condition 4 are selected at random. Apply the L3 6M probability that (i) All are not good (ii) Two are not good.
 - b Three students A, B, C are in running race. A and B have the same Probability of L1 6M winning and each is twice as likely to win as C. Find the Probability that B or C wins.

OR

2 In a bolt factory machines A, B, C manufacture 20%,30% and 50% of the total of L1 12M their output and 6%,3% and 2% are defective. A bolt is drawn at random and found to be defective. Find the probabilities that it is manufactured from (i) Machine A (ii) Machine B (iii) Machine C

UNIT-II

3 Find a real root of the equation $xe^x - \cos x = 0$ using Newton – Raphson method.

L1 12M

OR

4 From the following table values of x and y=tan x. Find the values of y when x=0.12 L1 12M and x=0.28.

X	0.10	0.15	0.20	0.25	0.30
y	0.1003	0.1511	0.2027	0.2553	0.3093

UNIT-III

- 5 a Solve y' = x + y, given that y(1) = 0. Find y(1.1) and y(1.2) by Taylor's series L3 6M method.
 - **b** Using Euler's method $y' = y^2 + x$, y(0) = 1. Find y(0.1) and y(0.2)

L3 6M

OR

6 Solve $y'' - x(y')^2 + y^2 = 0$ using R-K method of 4th order for x = 0.2 given y(0) = 1 L6 12M and y'(0) = 0 taking h=0.2.

Q.P. Code: 19HS0832

UNIT-IV

R19

7 a Find the Laplace transform of $f(t) = t^2 e^{2t} \sin 3t$

L1 6M

b Find the Laplace transform of $f(t) = e^{4t} \sin 2t \cos t$

L1 6M

OR

8 a Find $L^{-1}\left\{\frac{1}{\left(s^2+5^2\right)^2}\right\}$, using convolution theorem

L5 6M

b Find the Inverse Laplace transform of $\frac{1}{s(s^2 + a^2)}$

L1 6M

UNIT-V

9 a Calculate the value of $Z\left\{\frac{1}{(n+2)(n+1)}\right\}$

L3 6M

b Find the Z-transform of $(i)e^{-an}$ $(ii)ne^{-an}$ $(iii)n^2e^{-an}$

L1 6M

OR

- 10 Solve $y_{n+2} + 2y_{n+1} + y_n = n$. Using the Z-transform given that $y_0 = y_1 = 0$.
- L3 12M

*** END ***